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Abstract

We consider situations where each individual member of a defined object set is characterized

uniquely by a set of variables, and we propose models and associated methods that recognize

or classify a newly observed individual. Inputs consist of uncertain observations on the new

individual and on a memory bank of previously identified individuals. Outputs consist of

uncertain inferences concerning degrees of agreement between the new object and previously

identified objects or object classes, with inferences represented by Dempster-Shafer belief

functions. We illustrate the approach using models constructed from independent simple

support belief functions defined on binary variables. In the case of object recognition, our

models lead to marginal belief functions concerning how well the new object matches objects

in memory. In the classification model, we compute beliefs and plausibilities that the new

object lies in defined subsets of an object set. When regarded as similarity measures, our

belief and plausibility functions can be interpreted as candidate membership functions in the

terminology of fuzzy logic.

1 Introduction

The term object refers to a specific individual in a defined object set C. A set of variables

V1, V2, . . . , VK is assumed to possess defined values for each individual in C, with the understanding

that exact values of V1, V2, . . . , VK , if known, would characterize an individual uniquely. In practice,

such values are rarely known exactly, but instead are known up to measures of uncertainty, here
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represented by belief functions. This uncertain knowledge is assumed to be stored in a data bank

that we call memory for the members I1, I2, . . . , IN of a subset Cmem of C.

• The problem of object recognition is to draw uncertain inferences about whether a new, uncer-

tainly observed, individual I0 belongs to selected subsets of Cmem, including singleton subsets

and Cmem itself.

• The problem of object classification (aka supervised machine learning) extends the object

recognition model in three ways: first by specifying a partition of C into mutually exclusive

subclasses C1, C2, . . . , CM , second by assuming that the memory objects I1, I2, . . . , IN are

distributed in a known way among the subclasses Cm where m ∈ {1, 2, . . . , M}, and third

by assuming that the memory objects within each subclass are a random sample from the

population of objects associated with the subclass. The goal of object classification is to draw

inferences about the unknown subclass C0 of the new individual I0. Addressing this goal

requires drawing statistical inferences from the uncertainly observed random subsets of the

memory objects concerning population distributions of V1, V2, . . . , VK in each Cm.

Our models are postulated in Section 3 wherein V1, V2, . . . , VK are assumed to be binary, repre-

sented by indicators taking the values 0 and 1, and the actual subclasses of the memory objects are

assumed to be known. If there were no uncertainty in either I0 or Cmem, then the input to analysis

would be a vector of K indicators for I0, and corresponding vectors for the In in Cmem. Perfect

matching could then be performed, meaning that the In could be ordered, at least partially, by

counting the number of matches with I0 on the K variables. A match would mean agreement on all

K variables, and objects with a single mismatch or only a few mismatches might also be interesting

as near relatives. If one of the memory objects were a match, then C0 would assume the label of

the subclass to which the matching memory object belonged; otherwise C0 could be determined

by methods such as nearest neighbors and neural networks.1 Our goal is to study situations where

perfect measurement, hence perfect matching, is not achievable, using belief functions to represent

uncertainty about underlying matches and uncertainty about C0.

The numerical algorithms illustrated in this report restrict the components of the models to

simple support belief functions. A simple support belief function on a binary state space assigns

probability p to one singleton subset of the state space and complementary probability 1 − p to

the full state space. Jacob Bernoulli2 called this a pure probability argument, in contrast to the

more familiar mixed probability argument where probabilities p and 1 − p are assigned to the two

singleton subsets. In the case of object recognition, our models lead to a marginal belief function

concerning the match or nonmatch of I0 with any In. In particular, the belief and plausibility of

a match are measures of similarity between the observations on I0 and the observations on In. In
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an analogous way, we are led to compute beliefs and plausibilities that I0 belongs to each of the

subclasses C1, C2, . . . , CM in the classification model. When regarded as similarity measures, our

belief and plausibility functions fill the same role as membership functions that quantify a degree of

membership of an object in a class of objects, thus suggesting a relationship between belief functions

and Zadeh’s fuzzy logic.3

2 Elements of Belief Function Theory

In belief function theory, the set of possible states of the objective world is formally modeled as a

state space

S = {a1, a2, . . . , aJ} ,

where restriction to finite S is unnecessary in general, but adequate for present purposes, and serves

to avoid extraneous mathematical details. The aj are called atoms of S; only one atom is assumed

to be the “actual state”. We refer to the subsets T of S as statements ; the space of all possible

statements, statement space. For the finite S considered here, the statement space consists of 2J −1

statements, including S itself, but excluding the empty subset ∅. The statement T is verbalized as

the assertion

“The actual state of S lies in T .”

In this language, the role of belief functions is to quantify the uncertainty of an idealized observer

(IO) regarding whether the statement T is true or false.

The essence of a belief function is a basic probability assignment over the statement space. In

what follows, the subscript u will index the nonempty subsets Tu of S. The basic probabilities

associated with the nonempty subsets Tu of the state space S will be denoted mS( Tu ), or simply

m(Tu) when the associated state space is understood, where

∑
u

m(Tu) = 1 and m(Tu) ≥ 0 for all u .

From a mathematical prospective, a belief function is specified by a standard probability measure

constructed over the sample space of statements. When the set of statements Tu with m(Tu) > 0

is restricted to singleton subsets of S, a belief function effectively becomes indistinguishable from

a standard probability model.

No single value is available in belief function theory to identify as the probability of Tu. Instead

a pair of values, belief and plausibility, is needed. Belief, or BEL(Tu), is a “lower probability” that

sums m(Tv) over Tv contained in Tu. Plausibility, or PL(Tu), is an “upper probability” that sums
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m(Tv) over Tv having a nonempty intersection with Tu. BEL(Tu) and PL(Tu) are formal measures

of the IO’s uncertainty about the truth of the statement Tu. BEL simply means formal subject

probability (FSP) that must be assigned to the truth of Tu, while PL means FSP that may be

assigned to the truth of Tu. In practice, for a safe bet on the statement Tu, the correct choice of

betting probability is BEL(Tu), where the IO is assumed to be betting on the truth of Tu. Similarly,

1 − PL(Tu) is the complementary safe betting probability of the IO’s opponent on the other side

of the bet. Thus, although both bettors are assumed to adopt the same belief function, there in

general remains a spread between the amounts that the theory advises for safe wagers.

The preceding paragraphs define the raw materials that the operations of belief function calculus

manipulate. The two fundamental operations are propagation of a belief function from one state

space to a related state space, and fusion of two or more belief functions on a common state space

to yield a combined belief function. In practice, propagation and fusion are used in tandem. It

often happens that independent belief functions are constructed on different margins of a larger

state space, and it is necessary to propagate from each such margin to a common state space before

fusion can operate to combine the information. Formal definitions are indicated briefly below;

illustrations will appear in later sections.

Propagation links partitions of S. A partition (also called a margin) of S is a collection of

subsets of S that are mutually exclusive and include all the atoms of S. Formally we write

Π = {π1, π2, . . . , πM} ,

where each πm is a subset of S. Shafer4 also called Π a coarsening of S because knowing that the

actual state an in S is in πm for some m ∈ {1, 2, . . . , m} in effect means that Π is interpretable as

a state space referring to the same small world as S, but incapable of storing as much information

about the actual state as does S (except in the trivial case M = N).

Extension and marginalization are the two basic propagation operations. Extension assumes a

belief function on a margin X and defines an extended belief function on S by applying the basic

probabilities of the marginal belief function to the cylinder statements in S that project into the

corresponding marginal statements in X . Given a belief function on S, a marginal belief function on

a margin P is defined by projecting each subset of S into a corresponding subset of P and defining

basic probabilities for subsets of P by summing the original basic probabilities whose statements

project into a common statement in P. Note that extension followed by marginalization is an

identity operation, but many different belief functions on S yield the same marginal belief function

on P, so that marginalization followed by extension typically is not an identity operation.

The general form of propagation starts from a belief function on a first margin Π1, extends to

the full space S, and then marginalizes to a second margin Π2. A propagated belief function thus
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constructed describes uncertainty about statements concerning Π2 implied by the original belief

function on Π1.

Fusion goes by several different names. Shafer4 called it Dempster’s rule of combination from

its original appearance in reference 5, and also called it a direct sum operator. It should perhaps be

called the product-intersection rule6 because it generalizes the multiplication of Bayesian probabil-

ities of independent events and incorporates, in purely logical models reduces to, the intersection

rule of Boolean logic. Fusion assumes independence of the component belief functions, meaning no

interactions are allowed among the sources of evidence behind the components. To combine two

belief functions, one first intersects pairs of statements from the two input belief functions to cre-

ate new basic statements, and then assigns these statements the product of the basic probabilities

associated with the corresponding input statements. Note that in general only input statements

carrying nonzero basic probabilities need be intersected. Another detail is that typically more than

one pair of intersected statements results in the same new basic statement, in which case the rule

requires that the resulting products must be summed to yield the basic probability for that new

basic statement.

3 Models for Object Recognition and Object Classif ication

As previewed in Section 1, there are N memory objects and a new object, each characterized by a

common set of K binary variables. These may be visualized as forming a matrix with N + 1 rows

and K columns as shown in (1), where the first row represents characteristics of the new object I0,

the remaining rows correspond to the memory objects In, and the Xnk denote the binary variables,

with n indexing objects and k indexing variables. All models in this paper assume a state space

defined as the product space of (N + 1)K binary variables. The (full) state space thus has 2(N+1)K

atoms, while the statement space has (22(N+1)K − 1) statements.




X01 X02 · · · X0K

X11 X12 · · · X1K

...
...

. . .
...

XN1 XN2 · · · XNK


 (1)

Uncertain knowledge of the actual values of the Xnk is described by belief functions whose basic

probabilities are

mXnk
( {0} ), mXnk

( {1} ), and mXnk
( {0, 1} ) .

We assume in this paper that each of these belief functions is of the simple support variety, so
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either mXnk
( {0} ) or mXnk

( {1} ) equals 0. With each unknown Xnk, we associate a known binary

quantity Ynk, taking a value 0 or 1, and an associated pnk that represents the nonzero mXnk
( {Ynk} );

because mXnk
( {1 − Ynk} ) = 0, we have mXnk

( {0, 1} ) = 1 − pnk. The pair (Ynk, pnk) is therefore

a convenient representation of the assumed uncertainty about Xnk. We call Ynk the nominal value

of Xnk, and pnk is the belief that Xnk = Ynk. We emphasize that the representation (Ynk, pnk) can

only be used for simple support belief functions on binary margins.

We assume all component belief functions are independent. This means that, when the (N +1)K

belief functions are extended to the full state space, they may then be fused by the product-

intersection rule to yield a combined belief function over the full state space, thus opening the

path to computing beliefs and plausibilities about hypothesized matches between the new object

and the memory objects. Independence here may seem to be a strong assumption. Our model

is a natural starting point, however, because the role of the belief function assigned to each Xnk

is like a specification of measurement error for that particular Xnk, and, in statistical modeling,

measurement errors are often assumed to be independent.

3.1 The Case N = K = 1

The simplest object recognition problem is to draw inferences about whether a characteristic of

I0 matches the corresponding characteristic of I1, or equivalently whether the actual value of X01

equals the actual value of X11. Omitting the second subscript, the state space concerning the pair

(X0, X1) is

{(0, 0), (0, 1), (1, 0), (1, 1)} .

An independence model for this state space is constructed from two extensions followed by a fusion

operation. To illustrate, suppose that uncertain knowledge about the actual values of X0 and X1

is represented by the independent simple support belief functions (Y0, p0) and (Y1, p1), so that the

basic probabilities for the X0 state space are

mX0( {Y0} ) = p0 and mX0( {0, 1} ) = 1 − p0 ,

and those for the X1 state space are

mX1( {Y1} ) = p1 and mX1( {0, 1} ) = 1 − p1 .

Since the statements {Y0} and {0, 1} concerning X0 are equivalent to respectively the statements

{(Y0, 0), (Y0, 1)} and {(0, 0), (0, 1), (1, 0), (1, 1)} concerning (X0, X1), applying the same basic prob-

abilities p0 and 1 − p0 to these equivalent statements defines the extension from the X0 margin
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to the (X0, X1) state space. The same principle applies to the X1 margin, leading to a second

extension that assigns basic probabilities p1 and 1 − p1 to the statements {(0, Y1), (1, Y1)} and

{(0, 0), (0, 1), (1, 0), (1, 1)} concerning (X0, X1). Fusing the two extended belief functions over state-

ments of the (X0, X1) state space yields the combined belief function in Table 1.

Table 1: A combined belief function for the (X0, X1) state space

Tu m(X0,X1)( Tu )
{(Y0, Y1)} p0p1

{(Y0, 0), (Y0, 1)} p0(1 − p1)
{(0, Y1), (1, Y1)} (1 − p0)p1

{(0, 0), (0, 1), (1, 0), (1, 1)} (1 − p0)(1 − p1)

Suppose that the variable ζ1 stores the result of matching the actual values of X0 and X1, where

ζ1 =

{
0 if X1 �= X0 ,

1 if X1 = X0 .

Since the actual values of the Xn are unknown, the actual match result is unknown, but we can

associate ζ1 with a known binary quantity Z1 where

Z1 =

{
0 if Y1 �= Y0 ,

1 if Y1 = Y0 .
(2)

Like Y0 and Y1 being the nominal values of X0 and X1, Z1 is the nominal value of ζ1. Uncertain

knowledge of the actual value of ζ1 may be derived from uncertain knowledge of the actual val-

ues of X0 and X1 by marginalizing the combined belief function in Table 1 to the ζ1 state space.

The marginalization can be performed in two steps: first by projecting the four statements con-

cerning (X0, X1) to the ζ1 margin, so that the statement {(Y0, Y1)} concerning (X0, X1) becomes

the statement {Z1} concerning ζ1, and the three statements {(Y0, 0), (Y0, 1)}, {(0, Y1), (1, Y1)}, and

{(0, 0), (0, 1), (1, 0), (1, 1)} concerning (X0, X1) all become the statement {0, 1} concerning ζ1, and

second by assigning the basic probability p0p1 to the statement {Z1} and the sum of the basic

probabilities

p0(1 − p1), (1 − p0)p1, and (1 − p0)(1 − p1)

to the statement {0, 1}. The resulting belief function for the ζ1 margin is thus characterized by the

basic probabilities

mζ1( {Z1} ) = p0p1 and mζ1( {0, 1} ) = 1 − p0p1 ,
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from which we computed

BELζ1({Z1}) = p0p1 and PLζ1({Z1}) = 1 ,

the belief and plausibility that the actual value of ζ1 equals Z1.

3.2 The Case of General N and K = 1

Generalizing the case of one memory object to the case of N memory objects, this section outlines

the steps leading to inferences about whether the characteristic of I0 matches the corresponding

characteristics of the In in Cmem. The state space here consists of all 2N+1 possible realizations

of the tuple (X0, X1, . . . , XN). As in the previous section, uncertain knowledge about the actual

values of the Xn is represented by the independent simple support belief functions (Yn, pn), which

may be extended to the (X0, X1, . . . , XN) state space and fused by the product-intersection rule to

yield a combined belief function.

The results of matching the actual value of X0 and the actual values (X1, . . . , XN) are stored

in the vector (ζ1, . . . , ζN) whose actual value is unknown because the actual values of the Xn

are unknown. Each of the ζn is associated with a nominal value Zn, similar to the Z1 defined

in (2). Uncertain knowledge of the actual value of (ζ1, . . . , ζN) is described by the belief function

marginalized from the combined belief function for the (X0, X1, . . . , XN) state space. This marginal

belief function may then be used to compute the beliefs and plausibilities for statements concerning

(ζ1, . . . , ζN) such as the singleton statement {(0, 1, 0, . . . , 0)} which corresponds to the assertion

“The actual value of X0 matches the actual value of X2 only,”

and the singleton statement {(0, 0, 1, . . . , 1)} which corresponds to the assertion

“The actual value of X0 matches the actual values of all the Xn, except X1 and X2.”

3.3 Object Recognition with General N and K

As mentioned at the beginning of Section 3, the state space for the case of general N and K has

2(N+1)K atoms, each corresponding to a realization of the (N + 1)×K matrix in (1). Suppose that

the results of matching a characteristic of I0 and the corresponding characteristics of the In in Cmem
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are stored in a column of the N × K matrix




ζ11 ζ12 · · · ζ1K

ζ21 ζ22 · · · ζ2K

...
...

. . .
...

ζN1 ζN2 · · · ζNK


 . (3)

A row of ones indicates agreement on all K characteristics, meaning that the corresponding memory

object is a match. Formally we let

αn =

{
0 if ζnk = 0 for some k ,

1 if ζnk = 1 for all k ,

where k ∈ {1, 2, . . . , K}. The mathematical assertion αn = 1 thus represents the scientific statement

“The memory object In is a match,”

while αn = 0 represents “the memory object In is not a match.”

Similar to Sections 3.1 and 3.2, uncertain knowledge about the actual values of the Xnk is

described by the simple support belief functions (Ynk, pnk), assumed to be independent within and

across individuals. Following the steps outlined in Section 3.2, we first obtain a combined belief

function for the state space concerning a column of the characteristics (X0k, X1k, . . . , XNk) in (1) and

then marginalize it to yield a belief function for the state space concerning the corresponding column

of the match results (ζ1k, . . . , ζNk) in (3). Repeating these steps for the K variables generates K

belief functions, one for each column in (3). These K belief functions are independent and therefore

may be extended to the state space concerning (3) where the extended belief functions are fused

to produce a combined belief function, which is then marginalized to the state space concerning

(α1, . . . , αN), leading to a belief function representing uncertain knowledge of the actual value of

(α1, . . . , αN), from which the beliefs and plausibilities for statements concerning (ζ1, . . . , ζN) can be

computed. Interesting statements include, for example, the singleton statement {(0, . . . , 0)} which

corresponds to the assertion

“None of the memory objects is a match,”

or sometimes simply

“None of the above”,

and the singleton statement {(1, 0, . . . , 0)} which corresponds to the assertion

“Only the memory object I1 is a match.”
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3.4 Extension to Object Classification

The memory objects within each subclass constitute a training set in machine learning terminology.

Each training set is regarded as a representative sample from the population of objects associated

with its subclass. The goal of object classification is to draw inferences about C0. While achieving

this goal in principle includes drawing statistical inferences about the underlying class populations

based on the uncertain training data, this difficult task may be finessed when the training sets

are all sufficiently large by simply approximating the population distributions in nonparametric

fashion by their corresponding training set distributions. For illustrative purposes only, we assume

in Section 4.4 that our small samples adequately represent corresponding populations. With this

simplification, the class recognition model becomes part of the object recognition model.

4 Numerical Examples

In this section, we assume that

• there exits a object set C that can be partitioned into two mutually exclusive subclasses C1

and C2;

• there is a memory Cmem that has N = 7 members I1, I2, . . . , I7;

• the memory objects I1, I2, I3, and I4 belong to C1, while I5, I6, and I7 belong to C2;

• there is a new object I0 whose subclass C0 is unknown;

• all 8 objects are characterized by a set of K = 4 binary variables whose actual values are

unknown;

• uncertain knowledge of the actual values is represented by the (N +1)K = 32 simple support

belief functions (Ynk, pnk), where the nominal values Ynk are displayed in Table 2, and the

beliefs pnk will be specified later in the examples;

• all 32 belief functions are independent and thus may be extended from the binary margins to

the full state space where the extended belief functions are fused by the product-intersection

rule to yield a combined belief function.

The goal is to draw uncertain inferences about whether any of the In is a match for I0 and uncertain

inferences about the actual value of C0.

TABLE 2 HERE
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4.1 Two Special Cases

This example illustrates two special cases: case 1 where all the pnk equal 0.999, and case 2 where

all the pnk equal 0.001. In each of these cases, we followed the steps outlined in Section 3.3 and

obtained a combined belief function for the (α1, α2, . . . , α7) state space, from which we computed

various beliefs and plausibilities about matches between I0 and the In. The results are summarized

in Table 3.

TABLE 3 HERE

In case 1, the belief and plausibility that “I1 is a match” are 0.9920 and 1, strongly identifying

the new object as I1, which would have been the conclusion if all the nominal values in Table 2 were

in fact the actual values. The tiny plausibilities for the second to the last statements effectively

rule out I2, I3, . . . , I7 as potential matches and the possibility of finding no match in the memory.

Note that the difference between the belief and the plausibility for each statement is close to 0, a

property associated with inferences based on observations with little uncertainty.

In case 2, the difference between the belief and the plausibility for each of the first seven

statements is almost 1, and for the last statement is 1, reflecting almost total ignorance about the

listed statements, an effect of attempting to draw inferences from very uncertain observations.

4.2 When I0 is “Blurred”

This example studies the cases where some characteristics of I0 are quite uncertainly observed.

Table 4 displays the results for two cases: case 3 where p04 = 0.5 and all other pnk equal 0.99, and

case 4 where p03 = p04 = 0.5 and all other pnk equal 0.99.

TABLE 4 HERE

In case 3, the small plausibilities rule out I2, I3, . . . , I7 as potential matches. Similarly, I2, I3, I5,

I6, and I7 are ruled out as potential matches in case 4. Notice that, in both cases, we have exactly

BEL( “I1 is a match” ) = 1 − PL( “None of the above” ) .

This is just a coincidence because it happens in this example that

BEL( “I1 is a match” ) = BEL( not “None of the above” ) .
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4.3 When No Memory Object is a Match

Suppose that the nominal values for I0 are (0 0 0 0) instead of (0 0 0 1), so that no memory object

would match the new object if all the nominal values were in fact the actual values. We assume here

that pnk = 0.99 for all n and k. The second and the third columns of Table 5 list the beliefs and

plausibilities for some statements concerning (α1, α2, . . . , α7). The small plausibilities for the first

seven statements rule out all memory objects as potential matches. The belief and plausibility for

“none of the above” are 0.9411 and 1, strongly supporting the conclusion that none of the memory

objects is a match for I0.

TABLE 5 HERE

Excluding the “none of the above” option, we re-computed the beliefs and plausibilities. The

forth and fifth columns of Table 5 display the results, which indicate that I1, I2, and I3 are the best

potential matches among the memory objects, with I3 being the first choice, since the associated

belief is slightly larger. At first glance, one would expect I1, I2, and I3 to be equally likely potential

matches, because each has three nominal values matching those of I0. Nonetheless, the model

chooses I3 as the best potential match. In fact, the exact order from the best to the least potential

matches is I3, I1, I2, I4, I5, I6, and I7. Why is I3 a winner? The answer is that I3 looks “most unlike”

the nonmatching memory objects—for example, when the third variable in Table 2 is excluded, I1

and I4 have exactly the same nominal values, so do I2 and I5. Note that the results in Table 5

suggest that both I4 and I5 are nonmatches. The model accounts for the fact that parts of I1 and

I2 look very much like I4 and I5 who (as a “whole”) look quite unlike I0, and hence favors I3 over

I1 and I2.

Now we modify the nominal values for I4 and I5, so that they will no longer look like I1 and I2.

Suppose that the nominal values for I4 are now (1 0 1 1) instead of (0 0 1 1), and that the nominal

values for I5 are now (0 1 1 1) instead of (0 1 1 0). Table 6 displays the modified nominal values

considered here, including the change from (0 0 0 1) to (0 0 0 0) for I0. Keeping pnk = 0.99 for

all n and k, we calculated the beliefs and plausibilities from the model constructed from the simple

support belief functions characterized by the modified nominal values and the pnk. Table 7 shows

the results, which recommend equally I1, I2, and I3 to be the best potential matches for I0.

TABLE 6 HERE

TABLE 7 HERE
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Table 8 summarizes the results for the case where p04 = 0.5 while all other pnk equal 0.99. If

“none of the above” is an option, the model will say so, because, among the listed statements, “none

of the above” is the only statement that has nonzero belief (0.4755) and plausibility 1. If the model

must select a candidate from the memory, it will recommend I1, because the associated belief and

plausibility become 0.9245 and 0.9628, when “none of the above” is excluded as a possible answer.

In both cases, the model strongly suggests that I2, I3, . . . , I7 are nonmatches.

TABLE 8 HERE

4.4 From Recognition to Classification

For the moment, we treat the nominal values in Table 2 as the actual values and examine the

type of information that each of the four variables has regarding the actual value of C0. Since

the first variable of I0 has value that matches the values of the corresponding variable of both the

C1-subclass objects {I1, I2, I3} and the C2-subclass object I5, the first variable carries no specific

information as to whether C0 = C1 or C0 = C2. Similarly, the fourth variable says nothing specific

about the actual value of C0. The values of the second and the third variables of I0 match those

of the corresponding variables of some C1-subclass objects but not any of the C2-subclass objects.

Thus, each of the second and the third variables carries some information supporting C0 = C1 but

no information supporting C0 = C2.

Formally the state space concerning C0 is the two-element set {C1, C2}. Assuming that the

pnk are all 0.99, we can then obtain four independent belief functions for the C0 state space, each

marginalized from the combined model for the state space concerning (ζ1k, . . . , ζ7k), the match

results for the kth variable, where k ∈ {1, 2, 3, 4} indexes the four variables in Table 2. Associated

with the first and the fourth variables, the marginal belief functions for the C0 state space are both

of the vacuous variety, each taking the form

mC0( {C1, C2} ) = 1 ,

while the marginal belief functions associated with the second and the third variables are both of

the simple support variety, each taking the form

mC0( {C1} ) = 0.9606 and mC0( {C1, C2} ) = 0.0394 .

Fusing these four marginal belief functions yields a combined belief function for the C0 state space



Belief Functions Applied to Object Recognition and Object Classification 14

whose basic probabilities are

mC0( {C1} ) = 0.9984 and mC0( {C1, C2} ) = 0.0016 . (4)

Thus, the belief that C0 = C1 is 0.9984. This may be interpreted as a membership value in the

terminology of fuzzy logic that quantifies the degree to which I0 belongs to the subclass C1.

We emphasize that if the nominal values for I0 were (0 0 0 0) instead of (0 0 0 1), in which case

the recognition model would fail to find a match from among the memory objects (as illustrated in

Section 4.3), but the combined belief function for the C0 state space would be exactly the same as

that in (4), leading to a conclusion with very high belief that I0 belongs to the subclass C1.

5 Summary

Using independent simple support belief functions as building blocks, we constructed new models

for object recognition and object classification. We illustrated through numerical examples the

performance of our models in various situations. When there is little uncertainty in both the

observations on the new object and the memory objects, the recognition model will find a match,

if there is one, in the memory with high belief. For the cases in which no memory object actually

matches the new object, the recognition model will suggest that all memory objects are nonmatches

and return the verdict “none of the above”, while the classification model will often be able to assign

the new object to a subclass. If “none of the above” were not an option, the recognition model

would identify the memory objects that were “most similar” to the new object. In situations where

some observations of the new object are quite uncertain, the models appear to perform well in ruling

out many nonmatches, leaving a manageable number of potential matches for further analyses. Our

classification model ouputs the beliefs that the new object belongs to each of the possible subclasses;

these beliefs can be interpreted as membership values that quantify the degrees to which the new

object belongs to each of the subclasses, thus suggesting a relationship between belief functions and

fuzzy logic.
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Table 2: The subclasses and the nominal values for I0, I1, . . . , I7.

Object Subclass Variable
I0 C0 0 0 0 1
I1 0 0 0 1
I2 0 1 0 0
I3 1 0 0 0
I4

C1

0 0 1 1
I5 0 1 1 0
I6 C2 1 1 1 0
I7 1 1 1 1

Table 3: Beliefs and plausibilities for the two special cases

Case 1 Case 2
Statement pnk = 0.999 ∀n, k pnk = 0.001 ∀n, k

BEL PL BEL PL
I1 is a match 0.9920 1 1 × 10−24 1
I2 is a match 0 3.0 × 10−6 0 0.999998
I3 is a match 0 3.0 × 10−6 0 0.999998
I4 is a match 0 1.0 × 10−3 0 0.999999
I5 is a match 0 7.0 × 10−9 0 0.999997
I6 is a match 0 1.5 × 10−11 0 0.999996
I7 is a match 0 7.0 × 10−9 0 0.999997

None of the above 0 8.0 × 10−3 0 1
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Table 4: Beliefs and plausibilities for cases where I0 is “blurred”

Case 3: p04 = 0.5 and Case 4: p03 = p04 = 0.5
Statement all other pnk equal 0.99 all other pnk equal 0.99

BEL PL BEL PL
I1 is a match 0.4660 1 0.2354 1
I2 is a match 0 0.0100 0 0.0100
I3 is a match 0 0.0100 0 0.0100
I4 is a match 0 0.0152 0 0.5026
I5 is a match 0 0.0002 0 0.0051
I6 is a match 0 3.98 × 10−6 0 0.0001
I7 is a match 0 7.41 × 10−6 0 0.0002

None of the above 0 0.5340 0 0.7646

Table 5: When the nominal values for I0 are modified from (0 0 0 1) to (0 0 0 0)

pnk = 0.99 ∀n, k Excluding “none of the above”
Statement

BEL PL BEL PL
I1 is a match 0 0.0199 0.3212 0.3379
I2 is a match 0 0.0199 0.3212 0.3379
I3 is a match 0 0.0199 0.3244 0.3379
I4 is a match 0 0.0004 0.0032 0.0067
I5 is a match 0 0.0004 0.0032 0.0067
I6 is a match 0 7.88 × 10−6 3.1 × 10−5 0.0001
I7 is a match 0 1.57 × 10−7 3.1 × 10−7 2.7 × 10−6

None of the above 0.9411 1
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Table 6: The modified nominal values for I0, I4, and I5

Object Subclass Variable
I0 C0 0 0 0 0
I1 0 0 0 1
I2 0 1 0 0
I3 1 0 0 0
I4

C1

1 0 1 1
I5 0 1 1 1
I6 C2 1 1 1 0
I7 1 1 1 1

Table 7: Results for the analyses with the modified nominal values as input

pnk = 0.99 ∀n, k Excluding “none of the above”
Statement

BEL PL BEL PL
I1 is a match 0 0.0199 0.3266 0.3400
I2 is a match 0 0.0199 0.3266 0.3400
I3 is a match 0 0.0199 0.3266 0.3400
I4 is a match 0 7.88 × 10−6 3.20 × 10−5 0.0001
I5 is a match 0 7.88 × 10−6 3.20 × 10−5 0.0001
I6 is a match 0 7.88 × 10−6 3.20 × 10−5 0.0001
I7 is a match 0 1.57 × 10−7 3.20 × 10−7 2.7 × 10−6

None of the above 0.9415 1

Table 8: Results for p04 = 0.5 and all other pnk = 0.99

p04 = 0.5 and all Excluding
Statement other pnk = 0.99 “none of the above”

BEL PL BEL PL
I1 is a match 0 0.5050 0.9245 0.9628
I2 is a match 0 0.0199 0.0184 0.0379
I3 is a match 0 0.0199 0.0184 0.0379
I4 is a match 0 0.0002 1.80 × 10−6 0.0004
I5 is a match 0 0.0002 1.80 × 10−6 0.0004
I6 is a match 0 7.88 × 10−6 1.80 × 10−6 1.50 × 10−5

I7 is a match 0 3.98 × 10−6 1.80 × 10−8 7.56 × 10−6

None of the above 0.4755 1


